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Synopsis 
After a survey of suggested analytical methods, data are given for ten polymer samples 

(high and low pressure polyethylenes, atactic and isotactic polypropylenes, and of natural 
rubbers). It appears that the suggested methods of plotting the stress relaxation data 
after cessation of steady flow, as well as the quantities defined from such analysis, in the 
case of the given polymers can yield qualitative and semiquantitative information on 
such structural features such as average chain length, polydispersity, chain regularity, 
long branching, and crosslinking. 

I n  previous 

( I )  

a general procedure was suggested, starting from 
the following working hypotheses. 

The stress relaxation phenomenon can be described by means of 
unidimensional equations. Some experimental facts, as the Weissenberg 
effect, make us doubt the reliability of this assumption. Nevertheless, 
since our aim was to establish a set of simple equations enabling us to get 
a t  an approximate quantitative evaluation of stress relaxation following 
viscous flow, we will adopt the unidimensional scheme, which is common 
to most practical rheological calculations. 

A general equation of the Maxwell type is assumed as fundamental: (2)  

a = -  rl ( dy /d t )  (1) 

In  general, the viscosity factor q must be considered as a function of the 
relaxation stress ‘Q, of the time, and possibly also of other variables. 

(3) It is assumed that 

dy /d t  = (dy/d‘Q) (d‘Q/dt) (2) 

i.e., that the strain y (a number, namely a ratio between displacement 
and length) is a function of time only through the time-dependent variable 
stress. This assumption enables us to introduce the function dy/d‘Q, the 
“elasticity factor” or “elasticity law,” a factor describing the kind of 
elasticity concerned in this phenomenon. This function has the dimensioiis 
of a compliance. 

It must be stressed once more that the strain considered here must not 
be confused with the strain considered in the viscous flow or in any other 
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phenomenon where an actual displacement or deformation is measured. 
The strain considered here is a purely theoretical, nonmeasurable strain 
associated with the relaxation phenomenon, in order to  establish eq. (l), 
which sets the problem according to the viscoelastic scheme. The real 
strains acting in the relaxation phenomenon are the wriggling motions of 
the macromolecules stretched during viscous flow and the change in their 
configurations when the material relaxes after cessation of the viscous flow. 
The strain considered here can be thought of as some statistical average 
of such motions. Rheological measurements are not expected to be suffi- 
cient to give us any parameter related to  such strains. Perhaps experi- 
ments of stress or flow birefringence can be used in this connection. 

By combining eqs. (1) and (2), by multiplying by t and dividing by Q 
we obtain: 

t = Rn (3) 

R = d d r / d Q )  (4) 

(5) 

where 

and 
n = -d log Q/d log t 

The following points must be stressed: The multiplication by t and the 
division by ZE are always possible except on the straight lines t = 0 and 
Q = 0. Such lines of variability correspond to very short or very long 
times. Hence, eq. (3) is valid in the whole practical field of our actual 
measurements. 

When the 
relaxing system is a Maxwell (or a Voigt) body, this function becomes a 
constant where the classical relaxation (or retardation) time of the body is 
considered. It was suggested3 that the R values be assumed as relaxation 
times associated with any one of the corresponding values of the relaxing 
stress. A kind of relaxation spectrum is obtained in this way. 

We want to  emphasize that when the new characteristic function R is 
so defined, the elastic factors are not separated from the viscous ones. It 
is likely that a theory avoiding such an arbitrary partition has some theo- 
retical advantages. The numerical function n defined by eq. (5) is a 
direct and convenient result of the experimental determinations since the 
wide range of stresses and times considered makes it necessary to  use a 
log-log plot. Furthermore, such a plot allows a more correct consideration 
of the relative uncertainties. The only drawback is that graphic differ- 
entiation means summing up the uncertainties of both parameters. A 
careful consideration of such uncertainties must always be made in order 
to know the limits of availability of the above defined function R. 

The function R defined by eq. (4) is dimensionally a time. 

From eqs. (3) and (4) we obtain 

R = q(dy/dZE) = t/n (6) 

The analytical procedure resulting from eq. (6)  is the following. 
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From the experimental plots of the data giving log 111; as a function of 
log t the value of n is calculated by graphic derivation. By means of eqs. 
(5)  and (6) it is possible to plot the graphs of 111; as a function of R. As 
usual, log-log plots must be preferred. 

If the working hypotheses are correct, for a given polymer at a given 
temperature, a unique log 111; versus log R plot independent of the initial 
stress is expected. Indeed, from the phenomenon of the relaxation iso- 
chronism it is to be expected that such condition is automatically fulfilled 
in the whole isochronic region (in most cases, the widest part of the re- 
corded relaxation curve). 

The use of such plot as a fingerprint of a polymer, giving us such informa- 
tion on the long-range structural features, as chain length, polydispersity, 
average chain irregularities, long-chain branching, crosslinks is suggested. 

Otherwise, we can match the experimental data with some particular 
analytical law 

F ( W  = r l ( d r / d W  (7) 

suggested by theoretical considerations. In  this last connection, the fol- 
lowing procedure can be used: the given analytical function F(111;) is sub- 
stituted in eqs. (1) and (2). We obtain: 

-dt = [F(111;)/111;]d111; = F(111;)d(log 111;) (8) 

By integration, a law t = f(111;) is obtained, which can be matched with 
the experimental t = f(111;) curve. This procedure, which has already been 
followed in a previous study12 can be termed the procedure of integral 
straight line plots. 

When integration is not convenient, a differential procedure is also 
available, namely the procedure of differential straight line plots. From 
eq. (6) we obtain: 

log R = log ( t / n )  = log F(111;) (9) 

The values of log R corresponding to any measured values of 111; are known 
from the experimental data and are plotted as abscissas. By means of a 
trial-and-error procedure or by means of tabulated values of the suggested 
function F(Q) (which is ordinarily a function of 111; and of some parameters 
dependent on the polymer structure) the values of log F(111;) are plotted in 
the ordinates. The plot giving the better straight line with a 45' slope 
does define the wanted structural parameters. Some other experimental 
features can help us in this choice: e.g., the values of the relaxation areas 
or the (approximately constant) value of the time lag At between two 
curves corresponding to two different (possibly high) initial values ass 
of the relaxing stress. 

Some experimental instances are reported now in order to check how 
these analytical methods can be practically used. 
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Experimental 

We will report here the data for ten samples, of which four are the same 
considered p r e v i o ~ s l y ; ~ ~ ~  four of the others are polypropylenes, namely 
an atactic and an isotactic one having similar intrinsic viscosities and two 
isotactic polypropylenes of widely different polydispersity and similar 
chain length; the remaining two samples were cut from a natural rubber, 
one being unvulcanized and one submitted to slight curing. In Table I 
the known features of all samples are summarized, together with the experi- 
mental conditions (temperatures, rates of shear of the viscous flow preceding 
the stress relaxation, corresponding initial stresses lEaa). The stresses were 
measured by means of a Kepes consistometer. The relaxation times were 
recorded by means of a hand chronometer. Relaxation times of less than 
1 see. must be considered as approximate at +0.1 see. Thus, the investi- 
gation of the shortest relaxation times in our experimental conditions is 
only approximate. A special experimental device must be planned in order 
to investigate this important field of variability. The temperatures were 
kept constant at =tO.l"C. and the specimens were kept under a steady 
current, of Nz during the whole investigation time. 

Results 

We will consider first, as an example, specimen E (low pressure polyeth- 
ylene having an intrinsic viscosity of 1.30 dl./g.). In Table 11 experimental 
relaxation data for this polymer are given, namely: for each value of i., at 
each temperature, in the first and second columns are given the stressesaand 
their logarithms, in the third and fourth columns are listed the correspond- 
ing times t and their logarithms, in the fifth and sixth columns are given 
the derivatives n = - d log a / d  log t and their logarithms; the seventh 
column lists values of log t / n  = log R. 

Such data are given for three temperatures (160, 180, and 200°C.) and, 
at  each temperature, three elementary experimental runs are made, cor- 
responding to three different initial stresses. 

For the two lowest aaa we give (in the eighth column) the differences 
At (corresponding to any measured stress value) between the relaxation 
time of the curve starting from the given lower ZBa and the one of the curve 
starting from the highest mas. An estimated average value (At),,  is also 
given, corresponding to the intermediate part of the relaxation curves, 
where the time lag At can better be evaluated and where it appears to be 
approximately constant.2*3 

The primary (experimental) relaxation graphs are given (as log a versus 
log t plots) in Figure 1 for 180°C. From such graphs the values of n = 
-d log 25/d log t are graphically calculated. 

Figure 2 is the graph of log 1Ic versus log R; such graphs are called here 
normalized stress relaxation graphs. It is seen from Figure 2 that with in- 
creasing initial stresses such graphs tend actually t? overlap in a unique 
graph (within the limits of reproductibility and of experimental accuracy). 
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We will assume the “true” normalized stress relaxation graphs to be those 
obtained from the highest Q,, value used in our experiments. It can be 
noticed that, in order to obtain the normalized stress relaxation graph, it is 
necessary to operate at  tho highest ass values which can he reached in the 

Fig. 1. Experimental relaxation graphs for sample E at  180°C.: (0 )  = 36,000; 
(0) = 16,000; ( X )  & = 2,700. 

log R-r-  

Fig. 2. Normalized stress relaxation graphs for sample E a t  180°C.: (A) = 36,000; 
(0) 8,, = 16,000; (X)  8.. = 2,700. 
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Fig. 3. Normalized stress relaxation graphs for sample E at various temperatures: (0) 
T = 16OOC.; (0 )  T = 18OOC.; (+) T = 20OOC. 

Pig. 4. Differential straight line plots for sample E at 180°C. for various values of a k  
and PI.. = 36,000. 
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given experimental conditions. In  Figure 3 the three normalized stress re- 
laxation graphs corresponding to the different temperatures are plotted. 
Such sets of graphs can be taken as a basis for investigating a possible exten- 
sion of the principle of the corresponding states to the cases of nonlinear 
systems. Figure 4 is an illustration of the method of the differential straight 
line plots, assuming we are dealing with a viscoelasticity of the parabolic 
type : 

F(%) = kK[%K/(ID: + a K >  1" 

c - t = f [P(ID:)/ID:]ldID: 

(10) 

(11) 

When eq. (8) is integrated, we have: 

The integration constant C is determined by the boundary condition: 
ID: = ass at  t = 0. When 

@(ID:;) = f [F(ID:)IID:IdID: 

it will be: 

c = @ ( a s s )  (12) 

Substituting eq. (10) in eq. (12), we can assume (for ass >> IQK) the following 
approximative formula 

c = -kKID:%/&rs 

Then, the time lag At between two relaxation curves starting from two 
different initial stresses and ID::: will be 

It is seen from Figure 4 that the parameter ID:K is poorly defined: no plot 
is truly linear, and many plots are only approximately linear. We can 
choose the more linear plot defining those XK and 'QK values which better 
fulfill the condition expressed by eq. (13). 

It is stressed that the abscissa: log [&/(ID: + a K ) ]  is defined between 
- a, and 0 and that the XK is given by the intercept of the straight line 
differential graph (when it exists) with the straight line: log &/(ID: + 
QCK) ] = 0, while the slope of the same graph gives the exponent a. In  the 
given case, the above considerations yield the following values: a = 0.85 f 

Figure 5 shows the normalized stress relaxation graphs of samples A, B, C, 
and D at 18OOC; Figure 6 shows those of samples E, F, G, H, I, and L at 
the same temperature. In Table 111 are given the valuesof the param- 
eters of parabolic elasticity (a, ID:K, Ax) for the few instances where it 
was possible to define them with sufficiently good accuracy, by means of 
the differential straight line plots. 

In  Figure 7 are represented the normalized stress relaxation graphs for 
samples A and B (atactic and isotactic polypropylene) a t  three different 
temperatures. It is noteworthy that the plot of the isotactic sample at  

0.02: ID:K = -1 ; XK = ~ 5 0 0 0 .  
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Fig. 5. Normalized stress relaxation graphs a t  180OC. for samples A, B, C, and D. 

Fig. 6. Normalized stress relaxation graphs at  180°C. for samples E, F, G, H, I, and L. 

160OC. (i.e., below its melting point) is more shifted towards the left than 
the plot at 18OOC. as compared with the one at 2OO0C., the shifting being 
higher at  longer relaxation times R.  On the contrary, the normalized stress 
relaxation graphs for atactic polypropylene at the three different tempera- 
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tures are nearly equally spaced (c.f. polyethylene above the melting point, 
Sample E in Fig. 3). Furthermore, for isotactic polypropylenes, the in- 
crease in the elastic number when the temperature goes from 180 to 160OC. 
is greater than the increase noticed when the temperature decreases from 

I 

1 0 1 !q R- 

1 
Sample E 

I 

I 

0 

Fig.,7. Normalized stress relaxation graphs for samples A and B at various temperatures: 
(0) T = 16OOC.; (0) T = 18OOC.; ( X )  T = 200°C. 

200 to 180OC. (see Table I). These phenomena are attributed to crystalli- 
zation taking place during the long lasting relaxation. Thus, in this con- 
nection, the influence of crystallization is analogous to the influence of 
crosslinks, as it will be seen below. 

Discussion 

Figures 5 and 6 show that: when the other structural features (chain 
regularity, polydispersity, crosslinking and long-branching) are equal, an 
increase of the average chain length (as defined by the intrinsic viscosity) 
brings about a displacement of the normalized stress relaxation curves from 
left to right, namely, towards higher R. 

Further, for nearly equal chain lengths a higher irregularity of the chain 
brings about highest values of the relaxation stresses corresponding to the 
lowest relaxation times R, namely a steeper normalized stress relaxation 

Also a higher polydispersity brings about a shift of the whole normalized 
This shift is not wholly parallel 

The effect of polydis- 

graph. 

stress relaxation curve towards higher R. 
(being somewhat larger for the lowest stresses). 
persity is similar to that of an increase of the average molecular weight. 
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TABLE I11 
Parameters of parabolic elasticity at 180°C. 

~~ ~ 

Intrinsic Linearity 
range of viscosity, 

Sample dl./g. QK a XK stresses 

A 0.80 1 0.50 28 20-1,700 
B 0.90 1 0.62 53 20-400 

(20-100) C 0.95 (1) 
D 1.07 
E 1.30 1 0.82 5,000 100-1700" 
F 1.70 
G 0.87 1 0.67 350 100-4,300 
H 1.05 10 1.20 5,200 100-8,600 
I 2.80 1000 2.10 13,000 80&12,000 
L 1.80 1000 1.95 25,000 800-12,OOO 

- 
(0.70) (23) - - - 

-- - - - 

a See Fig. 4. 

When some crosslinks are introduced (in a very low degree, far below 
the gel point) there is a comparatively strong rise both of the stresses and 
of the relaxation times. In the meantime, a higher elasticity number is 
found. A similar effect is brought about by long branching. In  general, 
stress relaxation phenomena are highly sensitive to crosslinking (even for 
a very low degree of crosslinking). 

The accordance with a parabolic viscoelastic law, such as that expressed 
by eq. (10) has not proved successful or very significant, as is shown by 
the data of Table III. As happens occasionally in other fields of rheology 
(and in many branches of experimental physics) it may not be possible, 
in general, to find analytical functions (particularly simple ones) cor- 
responding closely to experimental graphs such as our normalized stress re- 
laxation curve. An analysis in a discrete series of simple analytical func- 
tions has already been made;2 such an analysis has always some degree of 
arbitrariness. 

At the present, we can state that the shapes of the normalized stress ie- 
laxation curves are highly sensitive to the general structural features con- 
sidered here, namely average chain irregularity, polydispersity, slight 
degrees of crosslinking, and long branching. Therefore, such graphs can 
be practically used in order to investigate the polymer structure, at least in 
a qualitative and semiquantitative way. 

Only a systematic investigation on a broad series of polymers having well 
known structural features can provide the basis for a quantitative evalua- 
tion of such features by means of stress relaxation measurements. 
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R6sum6 
Aprhs une revue des mBthodes analytiques suggBrBes, on donne des exemples pratiques 

se rapportant B dix Bchantillons les polyethylenes B haute e t  B basse pression, les poly- 
propylbnes atactiques et  isotactiques et  les caoutchoucs naturels. On voit la possibilitB 
que les m6thodes de mise en diagramme sugg6r6es, ainsi que les grandeurs d6finies par 
cette analyse des donnks de la relaxation aprbs la cessation d’un Bcoulement visqueux 
peuvent donner, dans le cas de ceux polymbres, des renseignements qualitatifs e t  &mi- 
quantitatifs sur des caracteristiques structurelles, ainsi que la longueur moyenne de 
chaine, la polydispersitb, la regularit6 de chaine, les ramifications longues et les rBticula- 
tions. 

Zusammenfassung 
Nach einer Ubersicht vorgeschlagener analytischen Methoden, es wird beispielweise 

uber zehn Mustern (Hoch- und Niederdruckpolyiithylenen, ataktischen und isotaktischen 
Polypropylenen und naturlischer Kautschuk) berichtet. Es zeigt sich die Moglichkeit 
dass die vorgeschlagenen Ubertragungsmethoden der Spannungsrelaxationserscheinun 
gen nach dem Aufhoren eines stetigen Fliessen, sowie die Grosse die durch eine solche 
Analyse bestimmt werden, Angabe iiber Struktureigenschaften leisten, sowie iiber durch- 
schnittlichen Kettenliingen, Polymolekularitiit, Regelmiissigkeit der Kettenstruktur, 
langen Verzweigungen und Vernetzungsgrad. 
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